Abstract
Strontium-90 (90Sr) is a major contaminant at nuclear legacy sites. The mobility of 90Sr is primarily governed by sorption reactions with sediments controlled by high surface area phases such as clay and iron oxides. Sr2+ adsorption was investigated in heterogeneous unconsolidated aquifer sediments, analogous to those underlying the UK Sellafield nuclear site, with grainsizes ranging from gravels to clays. Batch sorption tests showed that a linear Kd adsorption model was applicable to all grainsize fractions up to equilibrium [Sr] of 0.28 mmol L−1. Sr2+ sorption values (Kd; Langmuir qmax) correlated well with bulk sediment properties such as cation exchange capacity and surface area. Electron microscopy showed that heterogeneous sediments contained porous sandstone clasts with clay minerals (i.e. chlorite) providing an additional adsorption capacity. Therefore, gravel corrections that assumed that the > 2 mm fractions are inert were not appropriate and underestimated Kd(bulk) adsorption coefficients. However, Kd (<2 mm) values measured from sieved sediment fractions, were effectively adjusted to within error of Kd (bulk) using a surface area dependant gravel correction based on particle size distribution data. Amphoteric pH dependent Sr2+ sorption behaviour observed in batch experiments was consistent with cation exchange modelling between pH 2–7 derived from the measured cation exchange capacities. Above pH 7 model fits were improved by invoking a coupled cation exchange/surface complexation which allowed for addition sorption to iron oxide phases. The overall trends in Sr2+ sorption (at pH 6.5–7) produced by increasing solution ionic strength was also reproduced in cation exchange models. Overall, the results showed that Sr2+ sorption to heterogeneous sediment units could be estimated from Kd (<2 mm) data using appropriate gravel corrections, and effectively modelled using coupled cation exchange and surface complexation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.