Abstract

Strain rate sensitivity (SRS) of a face-centered cubic (fcc) CoCrFeNi high-entropy alloy (HEA) with grain sizes ranging from 57 μm to 45 nm was investigated using nanoindentation, and was compared with those reported for conventional fcc metals. Experimental results show pronounced grain boundary strengthening in the HEA. Estimated values of the SRS parameter, m and activation volume, V*, indicate similar plastic deformation mechanisms in HEA and Ni in nanocrystalline regime that are grain boundary mediated. In coarse-grained regime, the high lattice friction stress in the HEA results in much higher m and smaller V* as compared to coarse grained Ni.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.