Abstract
Dramatic effects of scratch interactions on material removal are observed in alumina. A series of parallel scratches are made in aluminas with different grain sizes to investigate the influence of scratch interactions on the material removal process in abrasive machining. The separation distance between the two scratches and the normal load are varied and subsurface microfracture and damage modes are examined to assess the mechanisms of material removal. A very small amount of material is removed when the separation distance between the two parallel scratches is large or when the two scratches completely overlap. However, at intermediate distances the volume of material removed increases dramatically as a result of the interactions between the two scratches. The maximum amount of material removed and the corresponding distance between the two scratches are found to depend strongly on the grain size and the load. Observations of surface and subsurface damage reveal that grain dislodgement is the predominant mechanism of material removal, irrespective of the grain size. The relation between grain size, scratch interactions, and the material removal process in grinding and abrasive machining of ceramics is discussed in terms of the short‐crack toughness of ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.