Abstract
The effect of the grain size on the high-temperature oxidation resistance of unalloyed titanium was experimentally investigated using titanium samples with two different grain sizes of 219 μm and 118 μm. The weight gain during oxidation and the penetration depth of oxygen from a metal surface were larger in the small-grain-size sample compared with the large-grain-size sample. In addition, oxygen diffusion was faster in the substrate of the small-grain-size sample. These results were attributed to the grain-boundary diffusion of oxygen. A steep change in the oxygen concentration was observed at a grain boundary. Our simulation results suggested that slower oxygen diffusion into the inner grain from the surface through the grain boundary with high diffusivity can cause the observed steep change in the oxygen concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.