Abstract
The microscopic origin of the grain size effects on the dielectric, piezoelectric, and thermal depoling properties of Aurivillius phase Bi3.15Nd0.85Ti3O12 was investigated. Using atomic force microscopy, domain walls were observed in micrometer grain size ceramics, but gradually disappeared with reducing grain size and were not found in ceramics with 90 nm grain size. In strain-electric field butterfly loops, the strain decreased with decreasing grain size indicating a decreasing contribution of non-180° domain walls switching to the strain. Lattice distortion (a−b)/b decreased with decreasing grain size. The thermal depoling resistance decreased with decreasing grain size, due to increasing internal mechanical stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.