Abstract

It is well known that spall failure strongly depends on the microstructure of a material. There have been numerous studies to study the effect of grain size on the overall spall strength and the total amount of damage in single element metals like copper. However, such systematic studies remain rare in two-phase materials and alloys. In this work, two incipient spall experiments were performed on a Cu–1%Pb alloy to understand the effect of grain size on the damage and failure in a two-phase material. Overall, these results showed that even though the spall strength did not change as a function of grain size, there were significant differences in the total amount of damage as a function of grain size. A clear increase in the total damage present in the material was seen as the grain size was increased from 32 to either 70 or 75 μm in either of the experiments. This difference was attributed to variations in the void growth rate as the grain size was increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.