Abstract

The present paper investigates completely reversed room temperature low cycle fatigue (LCF) behaviour of solution annealed austenitic stainless steel AISI 316L with two different grain sizes of 90 and 139 μm developed by solution annealing treatment at 1050 and 1150°C respectively and at six strain amplitudes ranging between ± 0·375 and ± 1·00%. Complete cyclic hardening has been observed for both the grain sizes. While fine grained steel shows an improvement in cyclic life compared with that of coarse grained steel for strain amplitudes ± 0·375 and ± 0·50%, and perfectly follows the Coffin–Manson (C–M) behaviour within the experimental domain, higher cyclic life with bilinear C–M behaviour is observed in the case of coarse grained steel at ± 0·625% strain amplitude and above. Optical microscopy of fatigue fracture surfaces reveals the formation of martensite on cyclic straining predominantly at higher strain amplitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call