Abstract

Local crystallographic orientation characteristics of grains with different sizes in a ZrTiAlV alloy after interrupted cooling from β phase region are investigated by electron backscatter diffraction (EBSD) technique. A statistical analysis of EBSD data shows that bigger parent β grains present weaker variant selection than smaller grains. The relevant influences are studied by comparing the nucleation behavior of grain boundary α (GBα) and succedent growth stage in varisized grains. In-depth analysis indicates that the deviation between pole of GBα and common pole of adjacent parent β grains is responsible for the smaller degree of variant selection inside the bigger parent β grains. The formation of more than one GBα type at the β/β grain boundary with common pole in bigger grains results in obstructing each other for these variants during the following growth stage, while only one type of GBα nucleate at the β/β grain boundary with common pole in smaller grains and it can freely grow into the interior of the grains, leading to stronger variant selection in smaller β grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.