Abstract

The CaCu3Ti4O12 ceramics were prepared by the traditional solid-state reaction method under different sintering conditions. The XRD patterns show that crystal structures of the samples are basically single-phase pseudo-cubic, except little second phases of CuO and Cu2O in the samples sintered in air at 1050 and 1100 °C, respectively, for 12 h. The SEM results indicate that the pellet sintered at 1100 °C for 12 h possess larger grain size and more Cu-rich phases at the grain boundaries than the pellet sintered at 1050 °C for 12 h. It is interesting that the pellet sintered at 1050 °C under the pressure of 5 Gpa for 3 h shows smaller grain size (~1 μm) and no Cu-rich phases due to the higher pressure during the sintering process. The results show that the grain size has a reverse effect on the values of the permittivity and the values of breakdown electric field (Eb) and nonlinear coefficient. The pellet sintered at 1100 °C for 12 h exhibits a higher permittivity, but with a lower breakdown electric field (Eb) and a lower nonlinear coefficient due to larger grain size. The pellet sintered at 1050 °C under the pressure of 5 Gpa for 3 h exhibits a lower permittivity, but with a higher breakdown electric field (Eb) and a higher nonlinear coefficient due to smaller grain size. The Cu-rich phases at grain boundaries can raise the resistance of the grain boundary leading to the lower dielectric loss tangent, which has been supported by the results of impedance spectroscopy analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call