Abstract

There exist many factors affecting fatigue behavior of metallic materials, among them the effect of grain boundary (GB) segregation of alloying elements remains largely unexplored. To exploit this factor, an atomistic simulation is performed to investigate the cyclic behavior of Al bi-crystals with GB segregation of Co or Ti during their mode I cyclic loading perpendicular to GB plane. Results are given in comparison with the case of pure Al bi-crystal. Detailed analysis of the structure evolution during cyclic loading for the considered bi-crystals is presented. It is found that during the cycling, plastic deformation of the pure Al bi-crystal occurs through perfect dislocation sliding followed by twinning, while the GB segregations inhibit the formation of both perfect dislocations and twins in an Al matrix leading to decrease in ductility of the bi-crystals and intergranular crack propagation rate. The cyclic loading of the samples with GB segregation is accompanied with a generation of plenty of Shockley partials. Both the alloying elements in GBs can improve the fatigue lifetime of the Al bi-crystals. The ability of GB segregations in bi-crystalline and polycrystalline Al to retard the dislocation emission from GBs that has been first theoretically revealed in the study could be successfully used to improve fatigue characteristics of metals, especially nanocrystalline metals with a dense GB network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.