Abstract

Different types of carbide phases and regions of their precipitation in tempered martensite of austenitic steel have been investigated with orientation microscopy (EBSD) and electron microprobe analysis. The steel structure consisted of large grains of high-temperature ferrite (~ 15%), without visible mesostructured, and martensite packages with a great number of low-angle boundaries. High-angle boundary spectrum with the most prominent coincidence site lattice (CSL) boundaries, Σ3, Σ11, Σ25b, Σ33с Σ41с, is typical for martensite. This spectrum, resulted from austenite transformation by shear mechanism according to orientation relationships (OR), intermediate between Kurdjumov-Sachs (K-S) and Nishiyama-Wassermann (N-W). In the structure two types of carbide precipitates were observed: large MC [~ NbC] along the boundaries of former austenite grains, and dispersed M23C6 [~ (W,Mo)2(Cr,Fe)21C6] predominantly along the boundaries in martensite packages. It has been shown that under martensite tempering M23C6 precipitation was mainly at high-angle intergranular boundaries. Carbide almost did not precipitate at low-angle and special CSL Σ3 boundaries. A few carbides were detected at special CSL boundaries, Σ11, Σ25b, Σ33с Σ41с.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.