Abstract
The self-assembly of triphenylene (TP)-based side-chain discotic liquid crystalline polymers (SDLCPs) with different grafting densities was investigated by using the dissipative particle dynamics (DPD) method. We explored the coupling effect between the main chain and the side-chain TP discogens with various length alkyl tails, and how the rigidity of the main chain, grafting density and spacer lengths affect the self-assembled morphologies of SDLCPs. By changing the above factors, we have obtained nine phases. It is deduced that a moderate grafting density, a polymer backbone with sufficient length and alkyl tails with medium length ensure SDLCPs form ordered columnar mesophases. It is worth noting that double columnar phases (Colne-Col and Colh-Col) were obtained with high grafting densities and sufficiently long backbones. All these results provide an effective basis and helpful guidance for the in-depth research of such kinds of fascinating organic semiconducting materials, SDLCPs, from the perspective of grafting density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.