Abstract

Fifty crossbred barrows with an average initial age of 31 d and BW of 9.94 kg were used in a 28-d experiment to evaluate the effect of a low-phytic acid (LPA) barley mutant (M) M955, a near-isogenic progeny of the normal barley (NB) cultivar Harrington with about 90% less phytate than NB, to increase the utilization of Fe, Zn, and Cu compared with diets containing NB. The response criteria were growth performance, hematocrit volume, metacarpal bone characteristics, and the apparent absorption, retention, and excretion of Zn and Cu. The 2 barley cultivars (NB and M955) and the 5 trace mineral (TM) treatment concentrations of Fe and Zn (0, 25, 50, 75, and 100% of the requirement as FeSO(4) and ZnSO(4)) and Cu (0, 40, 80, 120, and 160% of the requirement as CuSO(4)) made 10 treatments in a factorial arrangement. Available P was equalized at 0.33% in all diets by adding monosodium phosphate to the basal diet containing NB, and all diets contained 0.65% Ca. Diets were adequate in all other nutrients. Barley and soybean meal were the only sources of phytate in the practical diets that also contained spray-dried whey. The barrows were fed the diets to appetite in meal form twice daily in individual metabolism crates. There were no barley cultivar x TM treatment interactions, and there were no differences between the NB and M955 barley cultivars for any of the response criteria measured. However, for the TM treatments, there were linear increases (P < or = 0.05) in ADFI, ADG, hematocrit volume, metacarpal bone breaking strength and ash weight, and the apparent absorption, retention, and excretion (mg/d) of Zn and Cu. In conclusion, the LPA barley had no effect on the response criteria in this experiment, apparently because of the small increase in the availability of the endogenous trace minerals in the practical diets containing M955 compared with NB. However, increasing the supplementation of Fe and Zn from 0 to 100% (160% for Cu) of the requirement resulted in linear increases in growth performance, hematocrit volume, metacarpal bone strength and ash weight, and the apparent absorption, retention, and excretion of Zn and Cu. Therefore, these results indicate that the inorganic trace mineral supplementation of practical diets for young pigs should not be less than the National Research Council requirements for swine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.