Abstract

Gold nanoparticles in different proportions (0.5 and 1 %) have been grafted at the surface of a SiO2@g-C3N4 nanotube-based composite (SiO2 nanotubes obtained from halloysite clay) and also g-C3N4 (for comparison purposes) to test their degradation capacity over the antibiotic amoxicillin proving that the introduction of these nanoparticles on the catalyst modifies the degradation mechanism followed by the pollutant. Results obtained show that the introduction of the appropriate percentage of gold NPs in the composite improves amoxicillin degradation efficiency and establish a direct correlation between the presence of gold NPs and the production of ⋅O2-.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.