Abstract
Electroplated Ni/Au over Cu is a popular metallization for printed circuit board finish as well as for component leads, especially wire-bondable high-frequency packages, where the gold thickness requirement for wire bonding is high. The general understanding is that less than 3 wt% of Au is acceptable in SnPb solder joints. However, little is known about the effect of Au content on the reliability of SnAgCu solder joints. The purpose of this paper is to determine the acceptable level of Au in SAC305 solder joints. Three different package platforms with different Au thicknesses were assembled on boards with two different Au thicknesses using a standard surface mount assembly line in a realistic production environment. The assembled boards were divided into three groups: as-built, isothermally aged at 125 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> C for 30 days, and isothermally aged at 125 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> C for 56 days. All boards were then subjected to accelerated mechanical reliability tests including random vibration and drop testing. The results show that solder joints with over 10 wt% Au are unacceptable. If Cu is available to dissolve in the solder joint, then an Au content under 5 wt% will not significantly degrade the reliability of the solder joint. When Ni layers are present on both the board and the component sides of the interface, this limits the ability of Cu to dissolve into the solder joint, and hence an Au content under 3 wt% is acceptable. The failure mechanism for solder joints with high Au content is fractures through the AuSn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> intermetallic compound. Additional findings confirmed that there is a danger of placing parts near high-stress areas and that a high level of voiding reduced reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components, Packaging and Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.