Abstract
The wet carbonation process of steel slag (SS) is envisaged to be an effective way to sequestrate CO2 and improve the properties of SS as a supplementary cementitious material. However, the carbonation process still struggles with having a low carbonation efficiency. This paper studied the effect of glycine on the accelerated carbonation of SS. The phase composition change of carbonated SS was analyzed via XRD, FT-IR, and TG-DTG. The carbonation process of SS is facilitated by the assistance of glycine, with which the carbonation degree is increased. After 60 min of carbonation, SS with glycine obtained a CO2 sequestration rate of 9.42%. Meanwhile, the carbonation reaction could decrease the content of free calcium oxide in SS. This significantly improves the soundness of SS-cement cementitious material, and the compressive strength of cementitious materials that contain carbonated SS with glycine is improved. Additionally, the cycling performance of glycine in the successive wet carbonation process of SS was investigated. Multicycle experiments via solvent recovery demonstrated that although the promotion effect of glycine was reduced after each cycle, compared with the SS-water system, the carbonation process could still be facilitated, demonstrating that successive wet carbonation via solvent recovery has considerable potential. Herein, we provide a new idea to facilitate the wet carbonation process of SS and improve the properties of SS-cement cementitious material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.