Abstract

The objective of this study was to investigate the feasibility of using glycine nano-selenium (NS-Gly) as a feed supplement and to evaluate its influence on production performance, egg quality, serum biochemistry, oxidative status, and the intestinal morphology and absorption of laying hens. A total of 864 hens at 40weeks were randomly assigned into six groups including the basal diet (control, 0.13mg Se/kg); basal diet + 0.30mg Se/kg (Na2SeO3) diet; and basal diet + 0.15, 0.30, 0.45, and 0.60mg Se/kg (NS-Gly) diet. After 8weeks of Se supplementation, no difference was observed among the treatments on production performance and egg quality (P > 0.05). The levels of albumin (ALB) and alanine aminotransferase (GPT) were significantly influenced by dietary Se supplementation (P < 0.05). In the serum, the level of glutathione peroxide (GSH-Px) was significantly increased in the groups with the dietary NS-Gly supplementation (P < 0.05). The superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) levels in all groups of NS-Gly supplementation had a remarkable increase (P < 0.05). In the liver, GSH-Px was significantly increased in 0.45 and 0.60mg/kg NS-Gly groups (P < 0.05). The activities of SOD and catalase (CAT) were significantly increased in the groups of 0.30mg/kg NS-Gly diet (P < 0.05). The results of intestinal morphology showed that the crypt depth was affected by higher dose groups of NS-Gly diets in the duodenum, and the differences (P < 0.05) were obtained in villus height, the crypt depth, and the V/C in the jejunum. In the ileum, a significant increase (P < 0.05) of villus height was observed in 0.15 and 0.3mg/kg Se-added groups. The V/C was the highest in the SS groups (P < 0.05). The mRNA levels of solute carrier family 3 member 1 (rBAT), solute carrier family 6 member 19 (B0AT1), and solute carrier family 15 member 1 (PepT1) increased at different degrees in the duodenum, especially in 0.15 and 0.60mg/kg NS-Gly groups (P < 0.05). In the jejunum, the expression of B0AT1 was similar to that in the duodenum, and the expression of rBAT increased significantly in the 0.30 and 0.45mg/kg NS-Gly groups (P < 0.05). The mRNA level of PepT1 increased significantly in the 0.30mg/kg SS group. Conclusively, dietary NS-Gly supplementation could improve the antioxidant capacity, as well as the structure of small intestine in laying hens, although have no significant effects on the production performance and egg quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call