Abstract

α-Dicarbonyl compounds, which are widely found in common consumed food, are one of the precursors of advanced glycation end products (AGEs). In this study, the effect of glycation derived from glyoxal (GO), methylglyoxal (MGO) or butanedione (BU) on the in vitro digestibility of β-casein (β-CN) and β-lactoglobulin (β-Lg) was investigated. Glycation from α-dicarbonyl compounds reduced the in vitro digestibility of studied proteins in both gastric and intestinal stage. In addition, glycation substantially altered the peptides released through gastric and gastrointestinal digestion, as detected by liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-MS/MS). Crosslinked glycation structures derived from BU considerably reduced the sensitivity of glycated β-Lg towards digestive proteases, albeit to a lesser degree in glycated β-CN due to its intrinsic unordered structure. By contrast, non-crosslinked AGEs that formed adjacent to enzymatic cleavage sites did not block the enzymatic reaction in several cases, as evidenced by the corresponding digested peptides modified with glycation structures. These findings expand our understanding of the nutritional influence of α-dicarbonyl compounds and health impact of relevant dietary AGEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.