Abstract

One way to conserve fertilizer N in the plant-soil system is to immobilize it at the time of application by adding a readily available C source and to rely on the microorganisms to remineralize it to meet crop N demand during the season. The present study was conducted to determine the effects of microbial activity due to glucose amendment at the time of fertilization and planting on the distribution of fertilizer 15N at harvest among various N pools. Glucose C (150 g m-2) was added to soil at Ellerslie (Black Chernozem) in central Alberta at the time of seeding and fertilization with urea-15N (7.5 g m-2). Barley shoot mass, root mass, and root N at harvest in the non-glucose treatment were 1.8-fold, 1.9-fold, and 2.2-fold greater, respectively, than in the glucose treatment. The recovery of 15N in the soil-plant system was greater in the glucose (82%) than the non-glucose treatment (50%). Likewise, the recovery of 15N in soil was greater in the glucose treatment (72%) than the non-glucose treatment (22%). In both treatments most soil 15N remaining at the time of harvest was present as non-microbial organic 15N, but recovery of 15N in this pool was 3.4-fold greater in glucose-treated than in non-glucose-treated soil. The microbial response to the glucose addition effectively conserved fertilizer N in the active N phase; however, significant remineralization did not occur to meet plant N demands. Microbial transformations in the soil resulted in a constant ratio of non-microbial organic N formed per unit of microbial N formed and this ratio was not affected by the C amendments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.