Abstract

:This study aimed to investigate the role of ginsenoside Rh1 in regulating the proliferation, apoptosis, and oxidative stress in oxidized low-density lipoprotein (ox-LDL)-treated human vascular endothelial cells (VECs) and the underlying mechanisms. VECs were treated with ox-LDL to generate an in vitro atherosclerosis model. The effect of ginsenoside Rh1 on cell viability and proliferation was examined by MTT and colony formation assays, respectively, and cell apoptosis was determined by flow cytometry and transferase dUTP nick end-labeling assay. The levels of reactive oxygen species, malondialdehyde, and superoxide dismutase activity were detected using biological assays. Finally, the effect of ginsenoside Rh1 on the levels of BAX and BCL-2 and the nuclear erythroid 2-related factor-2/heme oxygenase (HO)-1 signaling pathway was determined by quantitative real-time polymerase chain reaction and western blot assays. Treatment with ginsenoside Rh1 significantly increased the proliferation and decreased the apoptosis of ox-LDL–treated VECs in a dose-dependent manner. Moreover, ginsenoside Rh1 also relieved oxidative stress in ox-LDL–treated VECs by activating the Nrf2/HO-1 signaling pathway. Thus, ginsenoside Rh1 affects the proliferation, apoptosis, and oxidative stress in ox-LDL–treated VECs by activating the Nrf2/HO-1 signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.