Abstract

The ginsenoside Rbs are the primary active compounds of Panax ginseng and ginsenoside Rb2 is a renowned component among the Rbs. This study aimed to investigate the potential effects of ginsenoside Rb2 on coronary heart disease (CHD). H9c2 cells were exposed to H2O2 to establish CHD model in vitro. Gene expression was determined by quantitative realtime PCR (qPCR) and Western blot. Cellular functions were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assays. We found that Ginsenoside Rb2 promoted cell proliferation while suppressed oxidative stress and apoptosis of H9c2 cells induced by H2O2 exposure. Mechanistically, Ginsenodise Rb2 involves in the regulation of nuclear factor, erythroid 2 like 2 (Nrf2)/heme oxygenase (HO)-1 signaling pathway. Inactivation of Nrf2/HO-1 signaling pathway reversed the effects of ginsenoside Rb2 on H9c2 cells. Taken together, ginsenoside Rb2 exhibited a cardioprotective effect in vitro. The underlying mechanism of ginsenoside Rb2 in H9c2 cells could be standardized to Nrf2/HO-1 signaling pathway, inhibiting cell apoptosis and regaining cell proliferation. The present study has proposed a novel mechanism of ginsenoside Rb2 in the cardioprotective effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call