Abstract

One of the key ecosystem services provided by mangroves is their role in mediating nutrient exchange, thereby protecting coastal ecosystems from negative impacts of nutrient enrichment. In this study, we tested whether geomorphological setting and level of rainfall affect the intensity and direction of nutrient exchange. Our hypotheses were that tidal mangroves retain more nutrients than riverine mangroves and that nutrient retention is stronger during periods of high rainfall. Concentrations of soluble reactive phosphorus (SRP), nitrogen oxides (NOx–-N) and ammonium (NH4+) were measured from water entering and leaving the mangroves during tidal cycles. Our results show that nutrient concentrations were higher in the flood tide compared with the ebb tide by up to 28% for NOx–-N, 51% for SRP and 83% for NH4+, suggesting retention by the mangroves. Geomorphological setting determined nutrient exchange to some extent, with some riverine sites receiving more nutrients than tidal sites and thus, being more important in nutrient retention. Rainfall was important in determining nutrient exchange as it enhanced SRP and NH4+ retention. These results show that mangroves can improve water quality of creeks and rivers, and underscore the need for conservation of mangroves over a range of geomorphological settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call