Abstract

This paper discusses the effect of different geometric representations of stenosis on the numerical solution of one-dimensional unsteady blood flow in stenotic blood vessel (or stenosis) taking into account fluid-structure interaction. In the formulation, a collapsible pressure-area constitutive relation is added to the coupled mass and momentum equations to allow for the interaction between the cross sectional area, volumetric flow rate and pressure of the flow and hence the prevalence of the one-dimensional fluid-structure interaction. The formulation is stabilized by employing Streamline-Upwind Petrov-Galerkin scheme. Non-reflecting boundary conditions are imposed based on the method of characteristics. Flow characteristics and the geometrical effects of the stenosis are then discussed. Numerical results show that stenosis with irregular shape is more prone to collapse as compared to the smooth one for a given baseline conditions. This study, thus, highlights the importance of representing the shape of the stenosis as close as possible as it might give information otherwise missing in the simplistic smooth representation of the stenosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.