Abstract

In recent years, artificial biological materials have been commonly used for the treatment of bone tissue defects caused by trauma, tumors, or surgical stress. Although tricalcium phosphate (TCP) is a promising absorbent bone tissue reconstruction biomaterial, it has been reported that its biocompatibility and osteoconductivity depend on its preparation method and sintering temperature. In addition, although it is thought that the microenvironment produced by the extracellular matrix plays an important role in cell growth and differentiation, there have been few studies on how the geometric structure of artificial biological materials affects cells. In the present study, a new honeycomb TCP scaffold containing through-holes with diameters of 300 µm has been developed. The influence of the sintering temperature on the crystal structure and material properties of the honeycomb TCP scaffold was investigated using scanning electron microscopy and X-ray diffraction. Its biocompatibility and osteoconductivity were also evaluated by implantation into experimental animals. It was found that a β-TCP scaffold sintered at 1200°C exhibited high biocompatibility and osteoconductivity, and when it was loaded with BMP-2, it exhibited both osteoconductivity and osteoinductivity, promoting rapid bone formation in both ectopic and orthotopic areas. It is thus a highly promising bone reconstruction material that is expected to find clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.