Abstract

The effects of the geometrical parameters of draft tubes and the clear liquid height on the average gas holdup EG in a 0.16 m I.D. bubble column for gas dispersion into the tubes were experimentally studied in an airtap water system. The gas holdup depended on the superficial gas velocity U(ING), the kinds of gas spargers, the diameter and length of the draft tubes, clearance Cb between the lower end of the draft tube and the bottom of the bubble column, and the clear liquid height HL. EG increased with decreasing hole diameter of the gas sparger at a small gas velocity UG, but did not depend on the kinds of gas spargers at a large UG. EG decreased with increasing clear liquid height HL. The effect of HL on EG was well expressed by the modified three-region model. The experimental data of EG were correlated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.