Abstract

The contemporary approach of utilizing uniaxial tests data for prediction of failure in composite materials, that are anisotropic and inhomogeneous under multi-axial loading has witnessed to be inadequate. Consequently, biaxial and multi-axial tests appeared obligatory to enhance our perceptive about the performance of these complex materials. The present paper is focused on selection of suitable geometry for the test coupons required under biaxial loading. The specimen with (1) uniform stress about the gauge section, (2) failure in the gauge section, and (3) preventing the undesired nonuniform strain distribution due to stress concentration is selected. Finite element analysis (FEA) is implemented on the cross shape (╬) specimen with different undercuts and holes with different stress ratios ranging from (σx:σy) = 1:1, 1:0.5, 1:0.75, 1:−0.25, 1:−0.5, and 1:−0.75 are applied on the four edges of the specimen for selection of suitable geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.