Abstract
Geogrid reinforcement of railroad ballast improves its structural response under loading, limits lateral movement of ballast particles, and reduces vertical settlement through effective geogrid-ballast interlocking. This improved performance can be linked to improved shear strength and resilient modulus properties. An ongoing research study at Boise State University is focusing on investigating the effects of different specimen and test parameters on the mechanism of geogrid-ballast interaction. A commercially available Discrete Element Modeling (DEM) program (PFC3D®) is being used for this purpose, and the effect of geogrid inclusion is being quantified through calculation of the “Geogrid Gain Factor”, defined as the ratio between resilient-modulus of a geogrid-reinforced ballast specimen and that of an unreinforced specimen. Typical load-unload cycles in triaxial shear strength tests are being simulated, and parametric studies are being conducted to determine the effects of particle-size distribution, geogrid aperture size, and geogrid location on railroad-ballast modulus. This paper presents findings from the research study, and presents inferences concerning implications of the study findings on design and construction of better-performing ballast layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.