Abstract

The work is focused on the degradation, cytotoxicity, and antibacterial properties, of iron-based biomaterials with a bioactive coating layer. The foam and the compact iron samples were coated with a polyethylene glycol (PEG) polymer layer without and with gentamicin sulfate (PEG + Ge). The corrosion properties of coated and uncoated samples were studied using the degradation testing in Hanks' solution at 37 °C. The electrochemical and static immersion corrosion tests revealed that the PEG-coated samples corroded faster than samples with the bioactive PEG + Ge coating and uncoated samples. The foam samples corroded faster compared with the compact samples. To determine the cytotoxicity, cell viability was monitored in the presence of porous foam and compact iron samples. The antibacterial activity of the samples with PEG and PEG + Ge against Escherichia coli CCM 3954 and Staphylococcus aureus CCM 4223 strains was also tested. Tested PEG + Ge samples showed significant antibacterial activity against both bacterial strains. Therefore, the biodegradable iron-based materials with a bioactive coating could be a suitable successor to the metal materials studied thus far as well as the materials used in the field of medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.