Abstract

Terminal deoxynucleotidyl transferase (TdT) places non-template-coded nucleotides (N additions) in the VH CDR3 of T cell receptors and immunoglobulins. Amino acids coded for by N additions are important in autoantibody binding of dsDNA in lupus. We hypothesized that a genetic lack of TdT would modulate disease in lupus-prone mice. To test this hypothesis, we derived TdT-deficient MRL/lpr mice. Serum levels of anti-dsDNA antibodies and anti-dsDNA producing splenocytes were significantly lower in the TdT − versus TdT + littermates. Albuminuria, glomerular IgG deposition, and pathologic renal disease were significantly reduced in the TdT − mice. Sequence analysis of anti-dsDNA hybridomas derived from TdT − mice revealed a lack of N additions, short VH CDR3 segments, yet the presence of VH CDR3 arginines. Thus, the genetic absence of TdT reduces autoantibody production and clinical disease in MRL/lpr mice, confirming the importance of N additions in the autoimmune response in these mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.