Abstract

The shear-driven electrostatic ion-cyclotron instability (EICI) is studied using the loss-cone distribution function by particle aspect analysis. The effect of the loss-cone distribution on the dispersion relation and growth rate of weak shear-driven EICI is studied. The whole plasma is considered to consist of resonant and non-resonant particles. The wave is assumed to propagate obliquely to the static magnetic field. It is found that the frequency of the EICI is Doppler shifted due to the transverse inhomogeneous flow in the direction of the magnetic field. It is also found that for anisotropic plasma the critical velocity shear needed to excite EICI depends upon the loss-cone distribution index ( J). With the increasing values the loss-cone distribution indices ( J), the critical value of normalized velocity shear needed to generate EICI in anisotropic plasma, decreases and is of the order of the weak shear. The loss-cone distribution acts as a source of free energy and generates the weak shear-driven EICI at longer perpendicular perturbations. It also lowers the transverse and parallel energy of the resonant ions. The study may explain the frequently observed EICI in the auroral acceleration region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.