Abstract

The synthesis of copper nanoparticles was carried out with gelatin as a stabilizer by reducing CuSO4.5H2O ions using hydrazine. Ascorbic acid and aqueous NaOH were also used as an antioxidant and pH controller, respectively. The effects of NaOH, hydrazine, and concentration of gelatin as stabilizer were studied. The synthesized copper nanoparticles were characterized by UV-vis spectroscopy, XRD, zeta potential measurements, FTIR, EDX, FESEM, and TEM. The formation of CuNPs@Gelatin is initially confirmed by UV-vis spectroscopic analysis with the characteristic band at 583 nm. XRD and TEM reports revealed that CuNPs@Gelatin (0.75 wt.%) is highly crystalline and spherical in shape with optimum average size of 4.21 ± 0.95 nm. FTIR studies indicated the presence of amide group on the surface of the CuNPs indicating the stability of CuNPs which is further supported by zeta potential measurements with the negative optimum value of −37.90 ± 0.6 mV. The CuNPs@G4 showed a good catalytic activity against methylene blue (MB) reduction using NaBH4 as a reducing agent in an aqueous solution. The best enhanced properties of CuNPs@G4 were found for the 0.75 wt.% gelatin concentration. Thermodynamic parameters (ΔH and ΔS) indicate that under the studied temperature, the reduction of MB by CuNPs@G4 is not feasible and had endothermic in nature.

Highlights

  • Copper nanoparticles are a less expensive other option to different precious metal nanoparticles with a range of prospective users in the area of nanoscience and technology [1]

  • In an effort to develop a green and cost-effective catalyst to address the said environmental issue, in this work, we report a simple method for the preparation of CuNPs stabilized with gelatin, using copper sulfate, NaOH solution, and hydrazine hydrate and ascorbic acid as copper precursor, pH controller, reducing agent, and to prevent the oxidation of CuNPs, respectively, without any inert atmosphere at a temperature of 80 °C

  • The UV-vis spectral profile generated for gelatin-stabilized CuNPs revealed the formation of CuNPs@Gelatin with the maximum wavelength around 583 nm

Read more

Summary

Introduction

Copper nanoparticles are a less expensive other option to different precious metal nanoparticles with a range of prospective users in the area of nanoscience and technology [1]. The preparation of CuNPs has been broadly concentrated on for a long time as it is an essential industrial material because of its unique physicochemical properties. In the area of electronics, copper is the most widely recognized as a result of its excellent electrical conductivity and low cost [2]. CuNPs have engrossed great attention in catalytic applications. CuNPs have significant impediments, which incorporate quick oxidation on subjection to atmospheric air. Copper oxidizes to Cu2O and CuO and convert to Cu2+ during preparation and storage, so it is hard to prepare CuNPs without an inert

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.