Abstract

Gedunin, a natural limonoid from Meliaceae species, has been previously described as an antiinflammatory compound in experimental models of allergic inflammation. Here, we report the antiinflammatory and antinociceptive effects of gedunin in an acute model of articular inflammation induced by zymosan (500 μg/cavity; intra-articular) in C57BL/6 mice. Intraperitoneal (i.p.) pretreatment with gedunin (0.005–5 mg/kg) impaired zymosan-induced edema formation, neutrophil accumulation and hypernociception in mouse knee joints, due to decreased expression of preproET-1 mRNA and production of LTB4, PGE2, TNF-α and IL-6. Mouse post-treatment with gedunin (0.05 mg/kg; i.p.) 1 and 6 h after stimulation also impaired articular inflammation, by reverting edema formation, neutrophil accumulation and the production of lipid mediators, cytokines and endothelin. In addition, gedunin directly modulated the functions of neutrophils and macrophages in vitro. The pre-incubation of neutrophil with gedunin (100 µM) impaired shape change, adhesion to endothelial cells, chemotaxis and lipid body formation triggered by different stimuli. Macrophage pretreatment with gedunin impaired intracellular calcium mobilization, nitric oxide production, inducible nitric oxide synthase expression and induced the expression of the antiinflammatory chaperone heat shock protein 70. Our results demonstrate that gedunin presents remarkable antiinflammatory and anti-nociceptive effects on zymosan-induced inflamed knee joints, modulating different cell populations.

Highlights

  • Articular inflammation is a major clinical symptom of acute and chronic joint diseases, such as rheumatoid arthritis, osteoarthritis and gout

  • The intra-articular (i.a.) injection of zymosan (500 μg/cavity) into mouse knee joints induced an inflammatory response within 6 h, characterized by significant edema formation and massive leukocyte accumulation, mainly due to neutrophil influx (Figure 1A–C), as previously demonstrated [6,8]

  • (36% and 41% of inhibition, respectively). Corroborating this data, histological analysis of knee joint tissues from zymosan-stimulated mice revealed an intense neutrophil accumulation within 6 h (Figure 1D), when compared to control group (Figure 1E), that was prevented by dexamethasone

Read more

Summary

Introduction

Articular inflammation is a major clinical symptom of acute and chronic joint diseases, such as rheumatoid arthritis, osteoarthritis and gout. Zymosan-induced articular inflammation is considered a model of arthritis that develops into a chronic stage in mice and rats [4,5] It is characterized by periarticular edema, neutrophil and mononuclear cell infiltration, synovial hypertrophy, pannus formation and pain [4,5], which are mediated by the massive local generation of protein and lipid inflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-1-β, IL-6 and leukotriene (LT)B4 [6,7]. Once in the tissue, activated neutrophils cause tissue damage via the release of reactive oxygen species (ROS) and proteases, such as matrix metalloproteinase (MMP)-8, MMP-9, neutrophil elastase and cathepsin G into the synovial fluid and joints [9,10,11] In addition to their cytotoxic properties, neutrophils of immune cells contribute to the pathology of joint diseases by orchestrating the inflammatory response, modulating the functions in T lymphocytes and macrophages, via the production of chemokines and cytokines [12,13]. We demonstrate that gedunin suppresses articular inflammation in an experimental model of zymosan-induced acute articular inflammation, impairing articular neutrophil influx, edema formation, hypernociception and the production of pro-inflammatory mediators, including cytokines and lipid mediators

Results and Discussion
Gedunin Impairs Neutrophil Activation in Vitro
Gedunin Modulates Macrophage Activation in Vitro
Animals
Induction of Acute Joint Inflammation
In Vivo Pretreatments
In Vivo Post-Treatments
Measurement of Knee Joint Swelling
Collection of Synovial Fluid and Leukocyte Counts
Histology
Evaluation of Articular Hypernociception
Real-Time RT–PCR for Evaluation of Preproet-1 Expression
3.10. Determination of Inflammatory Mediators in Synovial Washes
3.11. Lipid Body Induction and Staining
3.12. Shape Change Assay
3.13. Neutrophil Chemotaxis
3.14. Cell Adhesion Assay
3.15. Cytotoxicity Assay
3.16. Calcium Mobilization Assay
3.17. Determination of Nitrite Production
3.18. Western Blotting
3.20. Drugs and Reagents
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.