Abstract

Gd3+ and Al3+ co-doped ZnO nanoparticles were prepared by hydrothermal method. The effects of dopants on the microstructural, morphological, optical and dielectric properties of host ZnO system were investigated in the present report. The microstructural and morphological investigations of all the samples were carried out by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM). To investigate the presence of various intrinsic defects inside the undoped and doped ZnO samples, the Raman spectroscopy and photoluminescence spectroscopy measurements were recorded. The dielectric spectroscopy was carried out as a function of frequency and temperature. The consequences of dielectric measurements suggest that the dielectric response of the 3% Gd3+ and Al3+ co-doped ZnO sample is significantly enhanced compared to that of undoped ZnO sample. The dielectric response enhances due to the presence of large amount of oxygen vacancies and grain boundaries in the nanostructure of the doped material. All the dielectric parameters confirm the presence of dielectric dispersion inside the doped ZnO samples. The values of dielectric constant as well as ac conductivities were found to decrease at higher concentration of Gd3+ and Al3+ in the doped ZnO sample and it occurs due to predominating acceptor effect of Al3+ at the interstitial site of ZnO nanostructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.