Abstract

Recently, the chiral-induced spin selectivity in molecular systems has attracted extensive interest among the scientific communities. Here, we investigate the effect of the gate voltage on spin-selective electron transport through the $\alpha$-helical peptide/protein molecule contacted by two nonmagnetic electrodes. Based on an effective model Hamiltonian and the Landauer-B\"uttiker formula, we calculate the conductance and the spin polarization under an external electric field which is perpendicular to the helix axis of the $\alpha$-helical peptide/protein molecule. Our results indicate that both the magnitude and the direction of the gate field have a significant effect on the conductance and the spin polarization. The spin filtration efficiency can be improved by properly tuning the gate voltage, especially in the case of strong dephasing regime. And the spin polarization increases monotonically with the molecular length without the gate voltage, which is consistent with the recent experiment, and presents oscillating behavior in the presence of the gate voltage. In addition, the spin selectivity is robust against the dephasing, the on-site energy disorder, and the space angle disorder under the gate voltage. Our results could motivate further experimental and theoretical works on the chiral-based spin selectivity in molecular systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.