Abstract

ABSTRACTThis work reports experimental results on the effects of temperature (25, 45, and 65°C at different relative humidity) on the scrubbing of charged submicron particles by means of cold (25°C) droplets charged with opposite polarity. The aim of the study is to experiment how the capture of particles is influenced by the simultaneous presence of electrostatic and phoretic forces related to the occurrence of thermal and water vapor gradients close to the droplet surface. This information plays an important role in the development of wet electrostatic scrubbing (WES), an emerging technology for submicron and ultrafine particle capture. Tests were performed in a lab-scale system in which the particle laden-gas was scrubbed by a train of identic droplets. Particles were charged by a corona source while droplets are generated by electrospraying. Experiments revealed that for particles larger than about 250–300 nm, there were higher removal efficiencies in nonisothermal conditions, with limited differences...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call