Abstract
The multiphoton dissociation of CF3Cl induced by TEA-CO2 laser pulses has been studied in a focused beam geometry. TheR(10) [00°1–02°0] (\(\bar v = 1071.9cm^{ - 1} \)) laser line was used, so as to dissociate preferentially the minor isotopic component13CF3Cl. The isotopic selectivityS and the dissociation probability per pulse ω were measured in the pressure range between 0.25 and 8 Torr. With short laser pulses (90 ns FWHM),S is found to increase slightly with gas pressure up to 2 Torr, and ω, to increase almost linearly over the whole pressure range studied. A schematic model is proposed which satisfactorily explains these results if the transition rates across the energy level spectrum of the CF3Cl molecules are assumed to increase with gas pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Physics B Photophysics and Laser Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.