Abstract

Natural gas hydrates are a potential future energy modality with the advantages of clean burning and large resource reserves and have attracted worldwide attention. Natural gas hydrates formation and dissociation impact the skeletal structure and mechanical properties of porous media sediments. In addition, there is a synergistic effect between the migration of fine clay particles in porous media and hydrate behavior. In this study, methane hydrate was examined in-situ using a low-field nuclear magnetic resonance system in the presence of two suspensions of clay particles with different stability. The results showed that clay particles impacted methane hydrate formation and dissociation and the pore structure of porous media. Hydrate nucleated preferentially in large pores, causing them to split into smaller pores; the presence of clay particles, especially illite, improved the water conversion rate. The results indicated that water content in large pores increased after hydrate dissociation but was discontinuous among different pores. When illite was present, the distribution was more continuous; when montmorillonite was present, the water distribution of the large pores was similar to that of the original state. This work increases our understanding of the kinetics, water migration, and pore structure alteration of methane hydrate formation and dissociation in sediments with clay particles and provides support for the safe and efficient development of natural gas hydrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call