Abstract

Mechanically induced or assisted chemical reactions readily occur in many tribological interfaces; however, the reactants involved in such reactions are often not well understood. Using the tribo-polymerization of α-pinene as a model system, this study investigated how the surround gas environment influences the surface chemistry of substrate controlling the tribochemical reactivity. Based on the hypothesis that oxidative chemisorption of α-pinene at the sliding solid surface plays critical role, inert (dry N2), oxidative (dry air), and reductive (10% H2 in Ar) gas environments were chosen to alter the degree of surface oxidation in the sliding contact. Comparing the tribo-polymerization yield of α-pinene on two highly reactive substrates (Pd and CuO) and two relatively inert substrates (diamond-like carbon and silicon oxide), it was found that the oxidative gas significantly enhances the tribochemical reactivity of α-pinene. Infrared spectroscopy analysis was employed to confirm that the chemisorption of α-pinene on the surface in the oxidative gas environment plays a critical role. The gas environment was also found to affect the chemical composition and elastic modulus of the tribo-polymer products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.