Abstract

This article examined the reduction/nitridation of rutile in the He-N2, Ar-N2, and He (Ar)-H2-N2 gas mixtures, as well as pure nitrogen, in the temperature-programmed and isothermal experiments in a fixed-bed reactor. The extents of reduction and nitridation were determined from the off gas composition and LECO analysis. The off-gas composition was monitored using the infrared sensor (CO, CO2, and CH4) and dew point analyzer (H2O). The phase composition of the reduced samples was analyzed using X-ray diffraction (XRD). The temperature and gas composition had a strong effect on the rutile reduction. The reduction was the fastest in the H2-N2 gas mixture, followed by a reduction in nitrogen; the rate of reduction/nitridation in the He-N2 gas mixture was marginally higher than in the Ar-N2 gas. The rate of titania reduction/nitridation in the He (Ar)-H2-N2 gas increased with the replacement of He (Ar) with hydrogen. The article also discusses the mechanisms of reduction/nitridation in different gas atmospheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.