Abstract

BackgroundMarker occlusion during camera-based movement analysis is common. Different interpolation techniques are available for estimating location of missing marker trajectories. Research questionWhat is the effect of gap location and interpolation technique on linear and nonlinear measures for a given kinematic time series? MethodsKinematic data were recorded during motor-assisted elliptical training and treadmill walking. Gap-filling techniques (i.e., Cubic, Makima, Autoregressive, Nearest Neighbor, and No Interpolation) and gap locations experimentally applied to each cycle across initially complete time series (Gap 1: local minimum and maximum peaks; Gap 2: maximum peaks; Gap 3: maximum peaks at negative slope; Gap 4: random locations) were examined during linear (Maxima and Minima joint angles) and nonlinear [maximum Lyapunov exponent (LyE)] measures. ResultsGap-filling technique and gap location influenced values calculated for linear and nonlinear measures of joint motions. When referenced to the gold standard (original data series without gaps), across all joints studied the average % error of Maxima and Minima joint angles and LyE % error were lower when applying Cubic, Makima, Autoregressive, and Nearest Neighbor techniques compared to No Interpolation (p < 0.0001). The % error of Maxima joint angles was lower for Gaps 1, 3, and 4 compared to Gap 2 (p = 0.0003), while % error of Minima joint angles was lower for Gaps 2 and 3, compared to Gaps 1 and 4 (p < 0.0001). An interaction between gap-filling technique and gap location was identified for LyE % error, in which Gap 4 % error was significantly greater during No Interpolation compared to other gap-filling techniques (p < 0.0001). SignificanceFindings can guide selection of appropriate techniques to manage missing kinematic data points in camera-based motion analysis time series. Gap-filling techniques significantly reduced error in calculating select linear and nonlinear measures of variability, with Cubic most consistently resulting in the greatest reduction in error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.