Abstract

The rotary hearth furnace iron nugget process has advantages of short reaction time, high-quality reduced product and wide adaptability of raw materials and meets the trend in ecofriendly development of iron and steel industry. Although the rotary hearth furnace iron nugget process cannot replace blast furnace process, which is affected by production scale, thermal efficiency and technical maturity, it is still a feasible technology for iron production. In order to realize the efficient utilization of high Al2O3 iron ore resources, preparation of iron nuggets with high Al2O3 iron ore was studied. Using iron concentrate as raw material, the effects of slag basicity, Al2O3 and MgO on melting separation of iron ore–coal composite pellets, such as the melting separation temperature, the melting separation time, the morphology of melting separated product, and the recovery rate of iron nugget, were studied. The results showed that relatively low or high liquidus temperature of slag had a negative effect on reduction and melting separation of iron ore–coal composite pellets. The increase in fluidity index of slag resulted in a decline in the melting separation temperature and time of iron ore–coal composite pellets. Optimum basicity to produce iron nuggets using iron ore–coal composite pellets was 0.8–1.0, 0.4 and 0.8 for iron concentrate containing 2, 4 and 6–10 wt.% Al2O3, respectively. Corresponding liquidus temperature and fluidity index of slag were 1300–1475 °C and above 4.5, respectively. Under this condition, the lowest melting separation temperature and the shortest melting separation time of iron ore–coal composite pellets were 1375 °C and 7 min, respectively. The recovery rate of metallic iron in the form of iron nugget could reach about 94%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call