Abstract

ABSTRACTWe report on the study of the effect of various surface chemical treatment processes of n-GaN template layers used for subsequent growth of light emitting diode (LED) structures. The treatment procedure included cleaning in organic solvents, organic solvents followed by 5 minutes of HCl, organic solvents and 5 minutes of HCl followed by 2 minutes and finally 10 minutes of HF treatment. Chemical, optical and electrical properties of the surfaces of GaN and InGaN-based LED structures were systematically investigated by x-ray photoemission spectroscopy (XPS), auger electron spectroscopy (AES), atomic force microscopy (AFM), photoluminescence (PL) and electroluminescence (EL) spectroscopy. GaN layers that were grown on the samples treated with HCl and HF showed dramatically different surfaces having high density of 3D structures with high roughness. As measured by AFM, growth of the LED structure on top of the GaN layer continued the 3D-growth mode. LED structures grown on the HCl and HF treated GaN template layers showed minimal to no PL and EL emission and failed after a short period. We suggest a qualitative model of the growth that could potentially explain the underlying phenomena leading to such pronounced changes in the optoelectronic properties and surface conditions of the LED structures due to the treatment of the initial template layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.