Abstract
Present GaN technology consists primarily of heteroepitaxial, lateral high electron mobility transistors; however, high-power devices would be much more efficiently manufactured with a vertical geometry due to better blocking voltage scaling. This technology has yet to be realized due to the inconsistency of GaN wafer properties. These inconsistencies can be detected with several long-range, non-destructive techniques including Raman spectroscopy, optical profilometry, and photoluminescence mapping. In particular, Raman spectroscopy is an effective tool for determining the carrier concentration of GaN substrates and whether the wafers are uniform or inhomogeneous. In this work, vertical p-i-n GaN diodes are fabricated using both uniform and inhomogeneous wafers determined by using the A1 Raman peak position to monitor carrier concentration. The inhomogeneous samples have regular patterns of varying conductivity as a result of electron-donating defects brought about by changes in crystal stress. By avoiding these defects, we have found that diode performance improves by increasing the +/− 10 V rectification ratio by up to a factor of 5X and reducing the 200 V reverse bias leakage current by several orders of magnitude. Using the higher quality substrates with uniform electron carrier concentrations can improve the rectification ratio by another order of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.