Abstract

The present study emphasizes the potential of gamma radiation in enhancing zinc tolerance of Aspergillus terreus. Gamma-exposed A. terreus could tolerate 1.13 times more Zn, reflecting higher growth (in terms of CFU) under Zn stress and enhanced Zn removal efficacies than their unirradiated counterparts. Radiation-induced upregulation of antioxidative system (SOD, CAT, GSH and MT) of A. terreus is responsible for radiation-induced enhancement of Zn tolerance. FTIR spectra reveals the involvement of functional groups in Zn biosorption; SEM study divulges the structural changes due to metal and gamma exposure and SEM-EDX depicts the Zn uptake by A. terreus (both in gamma-exposed and unexposed conditions). This work sheds light toward utilizing low doses of ionizing radiation for making more metal-tolerant fungi and the possible mechanisms adopted by A. terreus for being more metallo-resistant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call