Abstract

AbstractTo immobilize halide and actinide ions present in specific ILW waste a process has been developed that uses mineral phases as the host material. The mechanism of substitution of gallium into these phases will have a large effect on the phase assemblage. This will inevitably affect the total amount of halide that can be immobilized in to total phase mixture.The full simulated waste stream composition containing varying concentrations (1–40 wt.%) of gallium oxide was studied. Also nominal compositions for gallium doped fluorapatites (Ca10-1.5xGax)F2(PO4)6 (x = 0, 0.25, 0.5, 0.75, 1.0) and gallium doped whitlockites Ca9Gay(PO4)6+y (x = 0.2, 0.4, 0.6, 0.8, 1.0) were prepared at 750–1050 °C.These were studied by powder x-ray diffraction (XRD) to determine the phase assemblage and solid solution limits of gallium in the apatite and whitlockite phases. It was found that a complete solid solution was formed between whitlockite, Ca3(PO4)2, and Ca9Gay(PO4)6+y. In the nominal apatite compositions it was found that gallium did not substitute into the apatite structure but was instead partitioned over Ca9Gay(PO4)6+y, gallium phosphate, and unreacted gallium oxide. At higher temperatures gallium suppressed the formation of the apatite phase and was largely partitioned into the Ca9Gay(PO4)6+y phase whereas at lower temperature the majority was present as unreacted Ga2O3. In the full DCHP compositions it was found that gallium is likely to be partitioned over a number of phases including apatite, cationdoped whitlockite and gallium phosphate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.