Abstract

A remarkable characteristic of borate glasses is the ability of forming magnetic nanoparticles at low doping with transition element oxides. We have studied structure and magnetic properties of iron oxide nanoparticles formed in borate glasses, in particular, concentration and temperature dependences of magnetic circular dichroism (MCD) and electron magnetic resonance (EMR) spectra. A series of glasses of molar composition 22.5K2O-22.5Al2O3–55B2O3 doped with 1.5 mass % of Fe2O3 and different contents of Gd2O3 from 0.1 to 1.0 mass % was prepared using a conventional melt quenching technique and subjected to an additional thermal treatment. The whole set of results allows to identify the predominant magnetic phase in these glasses as ε-Fe2O3 nanoparticles, with a considerable part of iron ions substituted by gadolinium. Analysis and computer simulations of the EMR spectra allow separating the contribution of electron paramagnetic resonance of diluted iron ions and together with the temperature dependences of magnetization demonstrate a superparamagnetic character of the nanoparticle magnetism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.