Abstract
Olaquindox, a quinoxaline 1, 4-dioxide derivative, has been widely used as a feed additive for promoting animal growth in China. The aim of present study was to investigate the effect of grow arrest and DNA damage 45 alpha (GADD45a) on olaquindox-induced apoptosis in HepG2 cells. The result showed that olaquindox induced the decrease of cell viability in a dose dependent manner. Compared to the control group, olaquindox treatment at 400 and 800μg/mL increased the expression level of GADD45a protein and reactive oxygen species (ROS) production, decreased mitochondrial membrane potential (MMP), and subsequently increased the expression of Bax while decreased the expression of Bcl-2, leading to the release of cytochrome c (Cyt c). However, knockdown of GADD45a enhanced olaquindox-induced ROS production, disrupted MMP and subsequently caused Cyt c release, then further increased olaquindox- induced cell apoptosis by increasing the activities of caspase-9, caspase-3, and poly (ADP-ribose) polymerase (PARP). In conclusion, the results revealed that GADD45a played a critical role in olaquindox-induced apoptosis in HepG2 cells, which may embrace the regulatory ability on the mitochondrial apoptosis pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.