Abstract

Dendritic arborization permits convergence of synaptic inputs and their integration in single neurons. The granule neuron in the dentate gyrus represents a relatively simple example where anatomically and functionally distinct medial and lateral perforant pathways terminate on different regions of the dendritic tree. High-frequency stimulation of either pathway alone results in the induction of long-term potentiation. However, whether the potentiated synapses in different parts of the dendrites interact is not known. In this study we have compared long-term potentiation and synaptic interactions in the lateral and medial perforant pathways in the “disinhibited” hippocampal slice preparation in the presence of the GABA A receptor blocker bicuculline. The data show that the magnitude of long-term potentiation induced by tetanic stimulation was similar in both pathways, but differences between the two pathways were revealed after two or more tetanizations. A significantly smaller capacity for further long-term potentiation in the lateral, as compared to the medial, perforant pathway was found and can be attributed to stronger postsynaptic GABA B inhibition in distal dendrites of granule neurons. Blockade of GABA B inhibition with CGP36742 (100 μM) unmasked additional long-term potentiation in the lateral pathway. Presynaptically, GABA B receptors produced a short-lasting heterosynaptic depression in the medial pathway, which was reduced by CGP36742. Coincident activation of the two pathways boosted long-term potentiation only in the medial pathway. We propose that the interactions between the two pathways are orchestrated to maximize associative long-term potentiation in the medial pathway; this may be important for types of learning attributed to the hippocampus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call