Abstract

The catalytic properties of conventional H-[Al]-ZSM-5 and gallium-substituted H-[Ga]-ZSM-5 were evaluated in the conversion of methanethiol to ethylene (CH3SH → 1/2C2H4 + H2S). Dimethyl sulfide (DMS), aromatics, and CH4 were formed as byproducts on the H-[Al]-ZSM-5 catalyst. The introduction of Ga into the ZSM-5 structure provided a high ethylene yield with relatively high selectivity for olefins. Based on the temperature-programmed desorption of NH3 and pyridine adsorption on zeolites, the strength of acid sites was decreased by introducing Ga into the ZSM-5 structure. Undesirable reactions seemed less likely to occur at weakly acidic sites. The suppression of the formation of dimethyl sulfide (CH3SH → 1/2C2H6S + 1/2H2S) and the sequential reaction of ethylene to produce aromatics provided a high yield of ethylene over H-[Ga]-ZSM-5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call