Abstract

ABSTRACTIn this paper, without transforming the original inertial neural networks into the first-order differential equation by some variable substitutions, fuzziness, time-varying and distributed delays are introduced into inertial networks and the existence, the uniqueness and the asymptotic stability for the neural networks are investigated. The existence of a unique equilibrium point is proved by using inequality techniques, and the properties of an M-matrix. By finding a new Lyapunov–Krasovskii functional, some sufficient conditions are derived ensuring the asymptotic stability. Finally, three numerical examples with simulation are presented to show the effectiveness of our theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call